Sixth Semester B.E. Degree Examination, Dec.09/Jan.10 Digital Signal Processing

Time: 3 hrs. Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

- a. Find N point DFT of the sequence $x(n) = a^n$ for $0 \le n \le N-1$. (06 Marks)
- b. Compute 5 point DFT of $x(n) = \{1, 0, 1, 0, 1\}$ and hence sketch it's magnitude and phase spectra. (10 Marks)
- c. Perform circular convolution of the sequences $x_1(n) = \{1, 1, 2, 2\}$ and $x_2(n) = \{1, 2, 3, 4\}$ using circular arrays. (04 Marks)
- a. Consider a finite length sequence $x(n) = \delta(n) + 2\delta(n-5)$.
 - i) Determine 10 point DFT of x(n).
 - ii) Find a sequence, that has DFT $y(k) = e^{j4\pi \frac{k}{10}} X(k)$, where X(k) is 10 point DFT of x(n).
 - iii) Find a 10 point sequence that has a DFT Y(k) = X(k) W(k), where W(k) is a 10 point DFT of w(n) as defined by $w(n) = \begin{cases} 1, & 0 \le n \le 2 \\ 0, & \text{otherwise} \end{cases}$ (10 Marks)
- b. A long sequence x(n) is filtered using a filter having impulse response $h(n) = \{2, 2, 1\}$. Determine the output sequence y(n) if $x(n) = \{3, 0, -2, 0, 2, 1, 0, -2, -1, 0\}$. Use OVERLAPADD fast convolution method. (10 Marks)
- a. Determine X(k) using DIT-FFT algorithm, given $x(n) = 2^n$, where $0 \le n \le 7$. (10 Marks)
- b. An 8 point DFT of a sequence x(n) is given by $X(k) = \{0, 2-j4.8284, 0, 2 \pm j0.8284, 0, 2 + j4.8284, 0, 2 + j4.8284\}$. Determine x(n) using DIF_FFT algorithm. (10 Marks)
- a. Obtain the cascade and parallel realization for the system function given by

$$H(z) = \frac{1 + 0.25z^{-1}}{\left(1 + 0.5z^{-1}\right)\left(1 + 0.5z^{-1} + 0.25z^{-1}\right)}.$$
 (14 Marks)

b. Realize a linear phase FIR filter having following impulse response.

$$h(n) = \delta(n) - \frac{1}{2}\delta(n-1) + \frac{1}{4}\delta(n-2) + \frac{1}{4}\delta(n-3) - \frac{1}{2}\delta(n-4) + \delta(n-5). \tag{06 Marks}$$

PART - B

- 5 a. Design a low pass, Chebyshev filter with following specifications
 - i) Acceptable pass land ripple of 2 dB
 - ii) Cutoff frequency of 1 rad/ sec
 - iii) Stop band attenuation of 20dB or more beyond 1.3 rad /sec. (10 Marks)
 - b. Design a low pass filter using bilinear transformation to satisfy the following specifications.
 - i) Monotonic pass and stop bands
 - ii) -3.01 dB cutoff frequency of 0.5π
 - iii) Magnitude down at least by 15 dB at 0.75π . (10 Marks)

- a. Transform $H_a(s) = \frac{s+1}{s^2 + 5s + 6}$ into a digital filter using impulse invariant transformation with T = 0.1 sec. (08 Marks)
 - b. Design and realize a digital low pass filter using impulse invariant transformation. The digital filter specifications are as follows.
 - i) Monotonic pass and stop bands.
 - ii) -3.01 dB cutoff frequency of 2 rad
 - iii) Magnitude down atleast by 15 dB at 4.8284 radians.

(12 Marks)

- 7 a. Explain transforming an analog normalized low pass filter into analog low pass, high pass, band pass and band reject filters using frequency transformation methods. (08 Marks)
 - b. A low pass FIR filter is to be designed with the following desired frequency transformation methods.

$$H_{d}(e^{jw}) = \begin{cases} e^{-j2w}, & -\pi/4 \le w \le \pi/4 \\ 0, & \pi/4 < |w| \le \pi \end{cases}$$

Determine the filter co-efficient h_d(n) if the window function is defined as

$$w(n) = \begin{cases} 1, & 0 \le n \le 4 \\ 0, & \text{otherwise} \end{cases}.$$

Also, determine the frequency response H(e^{jw}) of the designed filter.

(12 Marks)

- 8 a. Compare IIR and FIR filters. (06 Marks)
 - b. Write a note on computational efficiency of DIT-FFT algorithm. Compare it with direct computation of DFT. (06 Marks)
 - c. Explain the architecture of TMS 320 C5 × DSP processor. (08 Marks)

* * * * *

